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The first step of our synthesis (Scheme II) consisted in the 
reaction of butadiene in the presence of 1.0 equiv of SnCU in 
dry CH3CN6a with 5-methylcyclohexenone, I.7 Addition took 
place exclusively from the side opposite to the methyl sub-
stituent to give a 3:2 mixture of the cw-octalone, 2, together 
with its trans-isomer 3.8"10 Oximation of this mixture (26 
mmol) with hydroxylamine hydrochloride (31 mmol) in 
aqueous ethanol, followed by chromatography on silica gel 
furnished the cis-oxime 49 (mp 143-145 0C; 40%). It was no
ticed that the c/s-octalone 2 reacted faster with hydroxylamine 
than its trans isomer 3. Consequently the reaction of the mix
ture of 2 and 3 with a stoichiometric amount (relative to 2) of 
hydroxylamine hydrochloride and NaOAc in methanol en
abled the pure cis-oxime 4 to be separated from unchanged 
trans-ketone 3 " by simple crystallization from isopropyl al
cohol. Reduction'2 of the oxime 4 with 2 equiv of NaBHaCN 
in methanol66 afforded exclusively the hydroxylamine 59 (mp 
133-135 0C; 100%). Heating of 5 with 5 equiv of parafor
maldehyde in the presence of molecular sieve in toluene60 gave 
the bridged isoxazolidine 79 as an oil (70%). This transfor
mation presumably involves a transient nitrone, 6, which 
undergoes a highly regioselective intramolecular addition to 
a nonpolarized olefinic bond. Not even a trace of the corre
sponding positional isomer (isomer D in Scheme I) was found 
in the reaction mixture. Methylation of the adduct 7 with 1.5 
equiv of methyl fluorosulfonate in ether,6d followed by re
duction of the resulting salt with LiAlH46e gave the alcohol 
810'13 (mp 75-77 0C; 97%). Oxidation of 8 with Jones' reagent 
furnished the hydrochloride of the racemic alkaloid 9 (mp 
238-240 0C, sealed capillary, reported mp 171-172 0C;5 98%). 
The free base 9 was identified by comparison of its ir, 1H 
NMR, and mass spectra as well as its TLC and GC behavior 
with those of natural d- and synthetic ^,/-luciduline. 

A key feature of our approach is that during the conversion 
of 1 to 9 the original chiral center largely controls the devel
oping configurations of the four other chiral centers. It may 

be further pointed out that this synthesis nicely illustrates the 
utility of intramolecular additions of iV-alkenylnitrones as an 
equivalent of the Mannich reaction. The scope of the thermal 
reaction of ,/V-alkenylhydroxylamines with aldehydes is pres
ently being explored by using a variety of model com
pounds. 
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A Total Synthesis of Gliotoxin 

Sir: 

Gliotoxin I,1 an antibiotic produced by various species of 
Gladiocladium, Trichoderma, Aspergillus, and Penicillium, 
presents a formidable challenge to synthetic chemists. Dif
ficulties in controlling stereochemistry as well as functionality 
are accumulated in this small molecule. Four asymmetric 
centers in addition to two delicate ring systems—hydrated 
benzene and epidithiapiperazinedione—are present. We would 
like to report the first total synthesis of gliotoxin, using a novel 
solvent-dependent Michael reaction as a key step. 

The thioacetal 22'3 (mp 250-252 0C) was synthesized from 
glycine sarcosine anhydride in six steps4 in 30% overall yield 
by the method previously reported.5 Michael reaction of 4-
carbo-re/-/-butoxybenzene oxide 36 (excess) with 2 in meth
ylene chloride containing Triton B at room temperature for 
a short period afforded the alcohol 43 (mp 217-218 0C dec) 
as the major product (45% yield) and the epimeric alcohol 53 

(mp 255-257 0C dec) as the minor product (15% yield). The 
ratio of alcohols 4 and 5 produced in this Michael reaction was 
found to be dependent on the solvent and the time of reaction. 
A 3:1 ratio (88% yield) favoring the alcohol 5, the minor 
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product in CH2Ch-THtOn B, was finally realized in dimethyl 
sulfoxide containing Triton B at room temperature for a short 
period. Retro-Michael reaction was observed with alcohols 4 
and 5 in CH2CI2 or Me2SO in the presence of Triton B. Thus, 
an approximate 1:1 mixture of the alcohols 4 and 5 resulted 
from either 4, or 5, or 2 on Triton B treatment in CH2CI2 or 
Me2SO in the presence of 3 (excess) overnight. 

Since overall trans-opening of the epoxide ring is expected 
for 3,7 alcohols 4 and 5 must be the epimers regarding the 
relative configuration of the thioacetal bridge and the alcoholic 
group. Two probable orientations A and B—note ^,/-thioacetal 
2 and t/,/-benzene oxide 3 s are used—are considered for the 
transition state of the Michael reaction, when 2 and 3 approach 
in such a way as to cause the least steric hindrance. Inter
estingly, the favorable dipole interaction involved in A should 
make it preferred to B in nonpolar solvents such as methylene 
chloride. Thus, the desired stereochemistry was tentatively 
assigned to the alcohol 5 and the undesired stereochemistry 
to the alcohol 4.9 The importance of such a dipole interaction 
in the transition state determining the stereochemistry of the 
Robinson annelation is known in several cases.10 

A B 

The alcohol 5 was converted to the acetate 63 (mp 195-196 
0C, Ac20/Py/room temperature; 90% yield) and then to the 
hydroxymethyl derivative 73 (mp 181-182 0C) in three steps 
(1, TFA/room temperature; 2, ClCO2EtZEt3N-CH2Cl2/ 
room temperature; 3, NaBH4/CH3OH-CH2Cl2/0 0C) in 70% 
overall yield. Mesylation of 7 (MsCl/Et3N-CH2Cl2/room 
temperature), followed by lithium chloride treatment in 
DMF11 and then hydrolysis (NaOCH3/CH3OH-CH2Cl2/ 

CH 2 OH 

1 : g l i o t o x i n 

5 : R'=CO B u ' , X=H 

R=C6H4OCH-P 

room temperature), gave the chloride 83 (mp 200-201 0C) in 
95% overall yield. 

Phenyllithium, slowly added to a mixture of 8 and chloro-
methyl benzyl ether (excess) in THF at -78 0C with moni
toring by TLC, gave the benzylgliotoxin anisaldehyde adduct 
93 (mp 210-212 0C), which was isolated in 45% yield.12 Boron 
trichloride treatment of 9 in CH2C12 at 0 0C furnished the 
gliotoxin anisaldehyde adduct 103 (mp 241-242 0C) in 50% 
yield.13 ra-Chloroperbenzoic acid oxidation of 10, followed by 
perchloric acid treatment in methylene chloride at room 
temperature,5 yielded ^,/-gliotoxin I3 (mp 165-166 0C) in 65% 
yield. Synthetic substance was identical with natural gliotox
in14 by spectroscopic (NMR, ir, uv, MS) and TLC compari
son. 

Further efforts to the synthesis of an optically active form 
of gliotoxin and a biogenetic-type approach toward the toxin 
are in progress in our laboratories.15 
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Organocobalt Cluster Complexes. 20. Novel Chemistry 
of Acyl- and Aroylmethylidynetricobalt Nonacarbonyl 
Complexes. Unusual Thermal Ketone 
Decarbonylation Reactions1 

Sir: 

Acyl- and aroylmethylidynetricobalt nonacarbonyl com
plexes, I, are readily available by reaction of the appropriate 

Journal of the American Chemical Society / 98:21 / October 13, 1976 


